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We predict and analyze radiation-induced quantum interference effect in low-dimensional n-p junctions.
This phenomenon manifests itself by large oscillations of the photocurrent as a function of the gate voltage or
the frequency of the radiation. The oscillations result from the quantum interference between two electron
paths accompanied by resonant absorption of photons. They resemble Ramsey quantum beating and Stueck-
elberg oscillations well known in atomic physics. The effect can be observed in one- and two-dimensional n-p
junctions based on nanowires, carbon nanotubes, monolayer, or bilayer graphene nanoribbons.
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Although quantum mechanics was born more than a cen-
tury ago, only in the last decades it became possible to ma-
nipulate in a coherent way the states of single discrete-level
systems. Such fundamental phenomena as microwave-
induced Rabi oscillations1 and Ramsey quantum beating,2

which are well known in atomic physics and, in principle,
can be realized in any two-level system, were observed re-
cently in solid-state devices, for example, in Josephson
qubits,3 quantum dots,4 and ferromagnetic domain walls.5 In
order to manipulate quickly the states of a macroscopic sys-
tem one normally applies a time-dependent perturbation,
e.g., irradiates the system by an electromagnetic field �EF�
with the frequency close to the splitting between respective
energy levels. Time-dependent coherent phenomena in solid-
state systems are observed traditionally in zero-dimensional
systems, such as quantum dots or qubits.

Remarkably, the states of moving electrons in a two-band
semiconductor can be handled by means of external radiation
analogously to those of a two-level system. Indeed, if an
electron propagates in a semiconductor in presence of a non-
uniform potential, then its momentum p�r� is coordinate de-
pendent and so is the splitting �c�p�−�v�p� between the en-
ergies in the conduction and the valence bands. The
interaction of the electron with the radiation occurs effec-
tively only in the “resonant regions,” near the points where
the resonant condition

�c�pres� − �v�pres� = �� �1�

is satisfied, �� being the photon energy. The transmission of
an electron through a narrow resonant region is equivalent in
its reference frame to the application of a short resonant
pulse, which can coherently transfer the electron from one
band to another. Electron states in the conduction and the
valence band play here the same role as the two states of a
two-level system �a qubit� subject to an EF. The coordinate-
dependent potential and the distribution function of the inci-
dent electrons determine the effective time of the resonant
interaction with the EF and the initial state of the qubit,
respectively.

For a particular example of graphene n-p junctions, the
electron motion can be considered as the dynamical Landau-
Zener tunneling through the dynamical gap �R opened in the
electron spectrum by the resonant interaction with the EF.6,7

Varying the frequency � and the intensity S of applied EF
one can suppress transport in the junction6,7 or generate pho-
tocurrent, the directed current flowing without any dc bias
applied.7 The opening of the dynamical gap and some of its
effects on the classical bulky properties of semiconductors
have been studied since quite a while ago.8

Although the dynamical gap �R bears a remarkable re-
semblance to the Rabi frequency,1,9 observed routinely in
experiments with two-level systems,3–5 there is no obvious
way to vary the time of resonant interaction of electrons with
EF and the coherent quantum-mechanical transport phenom-
ena in low-dimensional n-p junctions have not been studied
yet. However, the transmission of electrons through the reso-
nant regions is equivalent to the dynamics of a two-level
system subject to a sequence of resonant pulses. Thus, one
may anticipate certain manifestations of Ramsey
oscillations2 in the transport properties of semiconducting
junctions.

In this Rapid Communication, we predict and analyze the
effect of the radiation-induced quantum interference on the
ballistic transport in low-dimensional n-p junctions. We
show that the quantum interference leads to large oscillations
of the photocurrent Iph as a function of the difference of the
gate voltages VG=V2−V1 �cf. Fig. 1�. The dependence
Iph�VG� is shown in Fig. 2 and has a universal form; the
parameters of the system and the radiation determine only
the amplitude and period of oscillations. The effect is rather
strong in one-dimensional �1D� semiconducting systems,
such as nanowires, carbon nanotubes �CNTs� �Fig. 1�a��, or
graphene nanoribbons �GNRs� �Fig. 1�b�� but can also be

FIG. 1. �Color online� Schematics of n-p junctions irradiated by
EF. �a� Carbon nanotube. �b� Monolayer or bilayer graphene nanor-
ibbon. The applied gate-voltage difference VG=V2−V1 allows one
to tune the potential profile in the junction.

PHYSICAL REVIEW B 82, 121409�R� �2010�

RAPID COMMUNICATIONS

1098-0121/2010/82�12�/121409�4� ©2010 The American Physical Society121409-1

http://dx.doi.org/10.1103/PhysRevB.82.121409


observed in some two-dimensional �2D� system, e.g., based
in monolayer or bilayer graphene.

The oscillations of the photocurrent can be understood
qualitatively as follows. The transmission of electrons
through the junction is determined by two processes, namely,
by the resonant absorption of photons near the “resonant
points,” where condition �1� is satisfied and by the strong
reflection from the junction interface, occurring at the “re-
flection points,” where the longitudinal component of mo-
mentum pz �z is the direction perpendicular to the interface�
turns to zero. The resulting electron trajectories, which con-
tribute to the photocurrent, are shown in Fig. 3. As one can
see, there are two paths corresponding to the propagation
from the right to the left: on the first one electrons move in
the valence band between the resonant and the reflection
points �red �black� line in Fig. 3� while on the second one
analogous motion occurs in the conduction band �blue �gray�
line in Fig. 3�. The interference between these two paths
results in the oscillating dependence of the photocurrent on
the gate voltages or on the frequency � of the EF.

Let us present the quantitative analysis of the radiation-
induced interference. The Hamiltonian of a 1D two-band
semiconductor in presence of external EF and the
coordinate-dependent potential U�z� reads

Ĥ = ��c�pz� + �v�pz��/2 + �̂z��c�pz� − �v�pz��/2

+ 2�R�pz��̂x cos��t� + U�z� . �2�

Here �̂x,z are the Pauli matrices and �R is the matrix element
of the resonant interband transitions, that depends on the
intensity S of the EF ��R��S�, on its polarization and on the
type of the semiconducting material. The potential profile
U�z� of the junction can be tuned by applying the gate volt-
ages, Fig. 1. For simplicity we disregard electron spins and
assume that there is only one valley.

It is convenient to carry out the calculations in the basis of
electron eigenstates, which are related to the initial ones by

the unitary transformation V̂�t�=exp�−i�t�̂z /2�. The respec-

tive transformed Hamiltonian Ĥ�= V̂+HV̂− i�V̂+V̂̇ contains
static parts and those proportional to exp��2i�t�. Similarly
to the generic case of a two-level system, one can use the
rotating-wave approximation �RWA�,9 i.e., neglect the latter

parts of the Hamiltonian Ĥ� near the resonance. Thus, we
obtain the effective Hamiltonian

Ĥef f = ��c�pz� + �v�pz��/2 + �̂z��c�pz� − �v�pz� − ���/2 + �R�̂x

+ U�z� . �3�

The same procedure has been used to analyze the electron
transport in a graphene monolayer6,7 and spin-dependent
transport in a 2D electron gas.10 The RWA is valid as long as
the amplitude of the EF is sufficiently small, �R	��. In the
absence of the coordinate-dependent potential U�z� the ei-

genvalues of Ĥef f read

E��pz� = ��c�pz� + �v�pz��/2 � ���c�pz� − �v�pz� − ���2/4

+ �R
2�1/2. �4�

Equation �4� shows that the resonant interaction of electrons
with EF opens the dynamical gap �R in the electron spec-
trum at the resonant momentum pz= pres satisfying condition
�1�.

FIG. 2. �Color online� The photocurrent Iph displaying oscilla-
tions as a function of the gate-voltage difference VG. Here we set
��=1.5Eg. The notations 
 and I0 are explained in the text �cf. Eq.
�14��.
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FIG. 3. �Color online� Typical electron trajectories in irradiated
1D n-p junction. �a� Electron energy as a function of the spatial
coordinate. �b� Energy versus momentum. The regime VG�Eg is
shown.
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Let us proceed to the analysis of electron dynamics in
presence of the coordinate-dependent potential U�z�. The

classical phase trajectories pz�z� of the Hamiltonian Ĥef f are
determined by the energy-conservation law

U�z� + E��pz� = �̃ , �5�

where �̃ is the electron energy in the transformed basis, re-
lated to that in the initial basis as �̃=���� /2 in the conduc-
tion �valence� bands far from resonant points.

Electron transmission through the resonant regions is de-
termined by the tunneling through the dynamical gap �R,
analogously to that through the forbidden band of conven-
tional semiconductors11 or to the transmission of electrons
through a graphene n-p junction.12,13 The position of the
resonant point z0 is determined by the condition

U�z0� + ��c�pres� + �v�pres��/2 = �̃ �6�

and Eq. �1�. Approximating the potential U�z� in the vicinity
of the point z0 by a linear function, one can describe the
transmission through the resonant region by the Landau-
Zener tunneling.6,7 The tunneling probability reads

T = exp�− 
�R
2 /��vF�� , �7�

where F is the slope of the potential U�z� close to the reso-
nant point and

v = �1/2�d��c�pz� − �v�pz��/dpz�pz=pres
. �8�

The reflection from the resonant region that occurs with
probability 1−T, corresponds to the processes of the photon
emission �absorption� in the initial basis of electron states.
The reflection is accompanied by the velocity reversal �cf.
Fig. 3�a��.

Far from the resonant point electrons weakly interact with
the EF. The resulting classical trajectories in a smooth poten-
tial U�z� are shown in Fig. 3. As we mentioned before, there
are two paths allowing the penetration from the right to the
left. The total probability of the inelastic electron transmis-
sion reads

PRL = T�1 − T��ei�I + ei�II�2/2, �9�

where �I�II� are the quantum-mechanical phases along the
two paths �cf. Fig. 3�. The accumulated phase difference �
=�I−�II is

� 	 �2/�F�

0

pres

��c�pz� − �v�pz��dpz. �10�

Here we assume for simplicity that the potential slope F is
constant in a sufficiently large region close to the n-p inter-
face. In this case the phase � is independent of the energy �̃.
Equation �10� is the leading-order quasiclassical contribution
to the phase difference; using it we neglect certain contribu-
tions of order unity that can result only in the shift of the
oscillations of the photocurrent.

The current through the junction is given by the modified
Landauer formula, allowing for the photon
emission/absorption7,14

I = ge�
n

 d�

2
�
PRL��,� + n����fL��� − fR�� + n���� .

�11�

Here fL��� and fR��� are the distribution functions in the left
and the right leads, PRL�� ,�+n���—the probability to pen-
etrate from the right to the left lead accompanied by the
energy change from � to �+n��, g—the number of the de-
grees of freedom not affecting the transport, e.g., spins, val-
leys, and transverse channels. Taking into account that each
electron in the energy interval �� in the valence band can
absorb a photon and penetrate into the conduction band, we
obtain the photocurrent as

Iph = �1/
�ge�T�1 − T�cos2 � . �12�

Since the phase difference � depends on the electric field
F /e=VG /d, where d is the length of an n-p junction, the
photocurrent Iph displays oscillations as a function of the
gate voltages, i.e., of VG. The oscillations result from the
quantum interference of electron moving in the confined area
between the resonant and reflection points in the conduction
and the valence bands �see Fig. 3�. These oscillations are
similar to the Stueckelberg oscillations,15 the quantum inter-
ference effect occurring in quantum collisions due to the su-
perposition of two quantum-mechanical pathways. If consid-
ered in the reference frame of moving electrons, the
oscillations of the photocurrent bear resemblance to the
“Ramsey fringes,” the quantum beating in the population of
a two-level system subject to a sequence of resonant pulses.
Indeed, introducing the period of electron motion in the con-
duction band as �t=2�dz�d�c /dpz�−1 and the average kinetic
energy ��̄0= �2 /z0��dz��� /2−U�z�� of confined electrons,
we write the phase difference as �= ���− �̄0���t and one can
recognize the well-known parameter determining the period
of Ramsey fringes.2,3

Let us apply our generic result, Eq. �12�, to a particular
case of n-p junctions based on GNRs and CNTs. These
quasi-1D objects can be metallic or semiconducting. How-
ever, as their gapless modes do not contribute to the photo-
current, we can consider at sufficiently low frequencies the
effective two-band spectrum16,17

�c,v = � �v0
2pz

2 + Eg
2/4. �13�

The gap Eg appears due to the transverse momentum quan-
tization. Calculating the integral over pz in Eq. �10� with the
spectrum �13� we arrive at the dependence of the photocur-
rent on the gate voltage VG �for �1−T�	1�

Iph = I0�
/VG�cos2�f�Eg/���
/VG� ,

f�x� = �1 − x2 + x2 ln��1 + �1 − x2�/x� ,


 =
��2d

2ev0
, I0 =

8e�R
2

�2�

1 − � Eg

��
�2�1/2

. �14�

The parameters I0 and 
 determine, respectively, the ampli-
tude and the period of the oscillations. The typical depen-
dence Iph on VG is shown in Fig. 2.

In order to observe the quantum oscillations in the photo-
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current a few conditions are to be satisfied. The photon en-
ergy �� must exceed the width of the forbidden band Eg. At
the same time, to maximize the effect, �� should be suffi-
ciently small not to involve in the transport any higher bands
and the forbidden band Eg has to be large enough, Eg

���v0eVG /d to ensure a strong reflection from the junction
interface. The gate voltage difference VG should be suffi-
cient, eVG�Eg, to create a smooth potential profile with a
nearly constant slope close to the interface. The order of
magnitude of the energy gap Eg can vary from 0.01 eV in
strained metallic carbon nanotubes to 1 eV in semiconduct-
ing CNTs or in GNRs,17 so the desired radiation frequency
may be in the THz or in the infrared optical region. For
example, for the typical junction parameters Eg=0.1 eV, d
=100 nm, and for the radiation frequency �=50 THz, the
characteristic scale 
 �cf. Fig. 2� estimates 2.5 V. Thus, one
can observe a large number of oscillations at VG�0.3 V.

Since the oscillations of the photocurrent Iph is a coherent
quantum interference effect, they can be destroyed by disor-
der and inelastic processes. For a good visibility of the os-
cillations the characteristic time of electron propagation be-
tween the resonant and the reflection points should be
smaller than the scattering time, i.e., d /v	�. On the other
hand the deviation of the dependency Iph�VG� from the uni-
versal form �Eq. �14�� allows one to quantitatively analyze
the processes of elastic and inelastic scattering in such sys-
tems.

The oscillations can be observed in some 2D n-p junc-
tions as well, for example, in those based on bilayer
graphene. Electrons there have a quadratic two-band spec-
trum ��p�= � p2 /2m, which leads to the strong reflection
from the n-p interface13,18 and thus allows one to confine
electrons between the resonant and reflection points, as nec-
essary for observing the oscillations. Their characteristic pe-
riod is 
bg /VG with 
bg=�d�m�� /e. In 2D systems the
phase � depends on the transverse momentum py, �bg�py�
= �
bg /VG��1− py

2 / �m����3/2. As a result, the oscillations of
the photocurrent Idc��dpyPRL�py� are smeared and sup-
pressed by the parameter ��� /
bg, as compared to the 1D
case.

In conclusion, we predict and analyze radiation-induced
quantum interference effect in the dc transport properties of
low-dimensional n-p junctions subject to an externally ap-
plied EF. This phenomenon manifests itself by large oscilla-
tions in the dependence of the photocurrent on the gate volt-
age or on the frequency of the EF. The effect can be observed
in diverse quasi-1D semiconducting systems, such as nano-
wires, CNTs, or GNRs, as well as in some 2D system, e.g.,
bilayer graphene.

We are grateful to L. S. Levitov for useful discussions and
to SFB 491, SFB Transregio 12, and the European Commis-
sion �FP7-ICT-2007-C; Project No. 225955 STELE� for the
financial support.

1 I. I. Rabi, Phys. Rev. 51, 652 �1937�.
2 N. F. Ramsey, Phys. Rev. 78, 695 �1950�.
3 D. Vion et al., Science 296, 886 �2002�; J. M. Martinis, S. Nam,

J. Aumentado, and C. Urbina, Phys. Rev. Lett. 89, 117901
�2002�.

4 F. H. L. Koppens, D. Klauser, W. A. Coish, K. C. Nowack, L. P.
Kouwenhoven, D. Loss, and L. M. K. Vandersypen, Phys. Rev.
Lett. 99, 106803 �2007�.

5 K. C. Nowack et al., Science 318, 1430 �2007�.
6 M. V. Fistul and K. B. Efetov, Phys. Rev. Lett. 98, 256803

�2007�.
7 S. V. Syzranov, M. V. Fistul, and K. B. Efetov, Phys. Rev. B 78,

045407 �2008�.
8 V. M. Galitskii, S. P. Goreslavskii, and V. F. Elesin, Sov. Phys.

JETP 30, 117 �1970�.
9 P. Hänggi, in Quantum Transport and Dissipation, edited by T.

Dittrich, P. Hänggi, G.-L. Ingold, B. Kramer, G. Schön, and W.
Zwerger �Wiley-VCH, Weinheim, 1998�.

10 M. V. Fistul and K. B. Efetov, Phys. Rev. B 76, 195329 �2007�.

11 E. O. Kane and E. I. Blount, in Tunneling Phenomena in Solids,
edited by E. Burstein and S. Lundqvist �Plenum Press, New
York, 1969�; A. A. Slutskin and A. M. Kadigrobov, Sov. Phys.
Solid State 9, 138 �1967�.

12 V. V. Cheianov and V. I. Fal’ko, Phys. Rev. B 74, 041403�R�
�2006�; A. Shytov, N. Gu, and L. Levitov, arXiv:0708.3081 �un-
published�.

13 K. S. Novoselov et al., Nature �London� 438, 197 �2005�.
14 M. Moskalets and M. Büttiker, Phys. Rev. B 66, 205320 �2002�.
15 E. C. G. Stueckelberg, Helv. Phys. Acta 5, 369 �1932�.
16 M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett.

98, 206805 �2007�.
17 Z. F. Wang et al., Appl. Phys. Lett. 91, 053109 �2007�; C. T.

White, D. H. Robertson, and J. W. Mintmire, Phys. Rev. B 47,
5485 �1993�.

18 E. McCann, D. S. I. Abergel, and V. I. Falko, Solid State Com-
mun. 143, 110 �2007�; I. Martin, Ya. M. Blanter, and A. F.
Morpurgo, Phys. Rev. Lett. 100, 036804 �2008�.

FISTUL et al. PHYSICAL REVIEW B 82, 121409�R� �2010�

RAPID COMMUNICATIONS

121409-4

http://dx.doi.org/10.1103/PhysRev.51.652
http://dx.doi.org/10.1103/PhysRev.78.695
http://dx.doi.org/10.1126/science.1069372
http://dx.doi.org/10.1103/PhysRevLett.89.117901
http://dx.doi.org/10.1103/PhysRevLett.89.117901
http://dx.doi.org/10.1103/PhysRevLett.99.106803
http://dx.doi.org/10.1103/PhysRevLett.99.106803
http://dx.doi.org/10.1126/science.1148092
http://dx.doi.org/10.1103/PhysRevLett.98.256803
http://dx.doi.org/10.1103/PhysRevLett.98.256803
http://dx.doi.org/10.1103/PhysRevB.78.045407
http://dx.doi.org/10.1103/PhysRevB.78.045407
http://dx.doi.org/10.1103/PhysRevB.76.195329
http://dx.doi.org/10.1103/PhysRevB.74.041403
http://dx.doi.org/10.1103/PhysRevB.74.041403
http://arXiv.org/abs/arXiv:0708.3081
http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1103/PhysRevB.66.205320
http://dx.doi.org/10.1103/PhysRevLett.98.206805
http://dx.doi.org/10.1103/PhysRevLett.98.206805
http://dx.doi.org/10.1063/1.2761266
http://dx.doi.org/10.1103/PhysRevB.47.5485
http://dx.doi.org/10.1103/PhysRevB.47.5485
http://dx.doi.org/10.1016/j.ssc.2007.03.054
http://dx.doi.org/10.1016/j.ssc.2007.03.054
http://dx.doi.org/10.1103/PhysRevLett.100.036804

